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a b s t r a c t

Spike-and-slab priors model predictors as arising from a mixture of distributions: those
that should (slab) or should not (spike) remain in the model. The spike-and-slab lasso
(SSL) is a mixture of double exponentials, extending the single lasso penalty by imposing
different penalties on parameters based on their inclusion probabilities. The SSL was
extended to Generalized Linear Models (GLM) for application in genetics/genomics,
and can handle many highly correlated predictors of a scalar outcome, but does not
incorporate these relationships into variable selection. When images/spatial data are
used to model a scalar outcome, relevant parameters tend to cluster spatially, and model
performance may benefit from incorporating spatial structure into variable selection. We
propose to incorporate spatial information by assigning intrinsic autoregressive priors
to the logit prior probabilities of inclusion, which results in more similar shrinkage
penalties among spatially adjacent parameters. Using MCMC to fit Bayesian models can
be computationally prohibitive for large-scale data, but we fit the model by adapting
a computationally efficient coordinate-descent-based EM algorithm. A simulation study
and an application to Alzheimer’s Disease imaging data show that incorporating spatial
information can improve model fitness.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Variable selection is a long-standing statistical problem in both classical and Bayesian paradigms, and aims to
etermine which variables/predictors are associated with some outcome(s). Classical statistics often relies on hypothesis
esting to select predictors in a (generalized) linear model (GLM), but variability of the resulting final models can
esult in unacceptable generalizability, despite removing many extraneous variables. Such issues partly motivated
he lasso model, which is a penalized model that implicitly performs variable selection by setting many parameter
stimates to zero, and decreases the variability of the selected model compared to other common classical approaches

∗ Corresponding author.
E-mail address: jleach@uab.edu (J.M. Leach).

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
s such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate
n analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_
pply/ADNI_Acknowledgement_List.pdf.
ttps://doi.org/10.1016/j.jspi.2021.07.010
378-3758/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jspi.2021.07.010
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2021.07.010&domain=pdf
mailto:jleach@uab.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.jspi.2021.07.010


J.M. Leach, I. Aban, N. Yi et al. Journal of Statistical Planning and Inference 217 (2022) 141–152

p
m
o
t
b
r
f
M
t

b
b
l
a

(Tibshirani, 1996). Additionally, while traditional GLMs are not identifiable when the number of predictors exceeds
the number of the observations, the lasso model is identifiable in most cases. Furthermore, while the lasso was born
within a classical framework, its Bayesian interpretation is realized by placing double exponential priors on the ‘‘effect’’
parameters (Park and Casella, 2008).

Bayesian variable selection often employs the spike-and-slab prior framework, which models the distribution of
arameters as a mixture: a wide ‘‘slab’’ distribution models ‘‘relevant’’ parameters and a narrow ‘‘spike’’ distribution
odels ‘‘irrelevant’’ parameters (Mitchell and Beauchamp, 1988; George and McCulloch, 1993). While initial work focused
n mixtures of normal priors, other distribution choices are possible. In particular, Roc̆ková and George (2018) introduce
he spike-and-slab lasso, a mixture of double exponential priors that trades the single lasso penalty for an adaptive penalty
ased on the probabilities of inclusion. While the initial spike-and-slab lasso was proposed and described for normal linear
egression, Tang et al. (2017) demonstrated a novel computational approach based on the EM algorithm that fits the model
or GLMs. One of the primary benefits of the algorithm from Tang et al. (2017) is that it is much faster than traditional
arkov Chain Monte Carlo (MCMC) methods, whose computational time can be prohibitive for large-scale data sets, like

hose found in genomics or neuroimaging studies.
Unlike classical GLM’s, penalized or Bayesian models are usually identifiable when predictors are highly correlated,

ut require suitably structured priors to use dependence structure in modeling and/or variable selection. This issue has
een approached from multiple angles within genomics research. Li and Li (2008) and Pan et al. (2010) extend the
asso to use networks to describe relationships among predictors, while Li and Zhang (2010) take a graph theoretic
pproach while employing an Ising prior on the model space to handle dependence structures. More recently, Roc̆ková and

George (2014) discuss an EM variable selection approach based on spike-and-slab normal priors, which in part explores
independent logistic regression priors and Markov random field priors to model dependence in variable selection, also
inspired by genetics. Importantly, the above models use structured priors as an avenue for incorporating relevant biological
information into models, making them more plausible and improving prediction accuracy.

In this work, we focus specifically on spatially structured priors in situations where it is reasonable to expect ‘‘relevant’’
and ‘‘irrelevant’’ parameters will exhibit spatial clustering, which implies the probability that a parameter should remain
in the model will be similar to the respective probabilities of spatially adjacent parameters. Other works have addressed
spatially structured variable selection, particularly within neuroscience and functional magnetic resonance imaging (Smith
and Fahrmeir, 2007; Quirós et al., 2010; Brown et al., 2014). However, we find that these works tend to focus on using
images as the outcomes of interest, e.g., activation across many voxels in the brain, whereas we want to address situations
where the outcome of interest for each subject is a scalar value, while treating images/spatially structured data as
the predictors rather than outcomes. For example, we may use images to predict or model whether a subject has, or
will develop, dementia, which is more naturally achieved in a GLM framework. This subtle shift in focus increases the
attractiveness of using penalized models like the lasso for variable selection.

The lasso has two primary downsides: when the number of predictors far exceeds the number of subjects, the number
of non-zero parameters cannot exceed the number of subjects, and when predictors are correlated it tends to select one
predictor and discard the rest. In part, these issues inspired the elastic net, which compromises between ridge and lasso
penalties (Zou and Hastie, 2005). Unlike the ridge penalty, the elastic net solution is sparse, but unlike the lasso penalty
it can include more non-zero parameters. This flexibility may be desirable when images are used as predictors, since
there are often more (highly correlated) spatial measurements than subjects, and the lasso penalty may be too severe. In
addition, while there are circumstances where the lasso is not uniquely identifiable, the elastic net is strictly convex and
is always uniquely identifiable (Zou and Hastie, 2005).

In what follows we extend the spike-and-slab lasso to a spike-and-slab elastic net, explicitly incorporate spatial
information into variable selection, and fit the model with an adaptation of the computationally efficient EM algorithm
from Tang et al. (2017). Section 2 reviews the spike-and-slab lasso GLM and outlines the EM-algorithm used to fit the
model. Section 3 introduces an extension of the spike-and-slab lasso GLM that generalizes the model to the elastic net and
uses intrinsic autoregressions to incorporate spatial information into variable selection. Section 4 presents a simulation
study to demonstrate the potential of the proposed method and examine its properties. Section 5 applies the methodology
to Alzheimer’s Disease (AD) classification using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Finally,
Section 6 summarizes the findings and discuss their implications.

2. Spike-and-slab lasso for GLM

2.1. Theory overview

GLM’s can model outcomes that are non-normal, and include the traditional linear model as a special case. The standard
form of a GLM is given by:

g(E(yi|X i)) = X iβ = β0 +

J∑
xijβj = ηi, i = 1, . . . ,N (2.1)
j=1
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where g(·) is an appropriate link function, X i is a 1 × J subject-specific design vector, β is a J × 1 parameter vector, β0 is
an intercept, J is the total number of predictors in the model, and N is the number of observations. The joint likelihood,
or data distribution, may contain an over-dispersion parameter, φ, and is given by:

p(y|Xβ, φ) =

N∏
i=1

p(yi|X iβ, φ) (2.2)

The classical lasso model is equivalent to placing double exponential priors on the βj (Park and Casella, 2008). Thus, the
spike-and-slab lasso prior is a mixture of double exponential distributions, where the narrow spike distribution shrinks
‘‘irrelevant’’ parameters more severely than the wider slab distribution, which allows ‘‘relevant’’ parameters to have
estimates of larger magnitude. The model’s explicit formulation is given by (Roc̆ková and George, 2018):

βj|γj, s0, s1 ∼ DE(βj|0, Sj) =
1
2Sj

exp
(

−
|βj|

Sj

)
(2.3)

here Sj = (1 − γj)s0 + γjs1, the indicator variable γj determines the inclusion status of the jth variable, and s1 > s0 > 0.
n practice we do not know the value of the γj, and so we incorporate uncertainty with a Binomial prior:

p(γ|θ ) =

J∏
j=1

θγj (1 − θ )1−γj (2.4)

here θ = P(γj = 1|θ ) is a global probability of inclusion for the βj. In Section 3 we shall discuss how to use probabilities
f inclusion to incorporate spatial information, but first we will describe how to fit the model described here by assigning
a Uniform(0, 1) prior.

.2. The EM-coordinate descent algorithm

Bayesian analysis traditionally estimates parameters’ posterior distributions. However, for very large numbers of pre-
ictors even fast MCMC draws from the posterior distribution can impose prohibitive costs, and optimization approaches
esulting solely in point estimates may be preferred in some practical settings, especially if the primary goal of analysis
s prediction and/or variable selection. Tang et al. (2017) use an expectation maximization coordinate descent (EMCD)
lgorithm to fit the spike-and-slab lasso by treating the model inclusion indicators γj as missing values. The log posterior
ensity is given by:

log p(β, φ, γ, θ |y) = log p(y|β, φ) +

J∑
j=1

log p(βj|Sj) +

J∑
j=1

log p(γj|θ ) + log p(θ )

∝ ℓ(β, φ) −

J∑
j=1

1
Sj

|βj| +

J∑
j=1

(γj log θ + (1 − γj) log(1 − θ )) (2.5)

here ℓ(β, φ) = log p(y|β, φ). The algorithm takes the expectation with respect to the γj conditional on the other
arameters (E-step), inputs these conditional expectations into Eq. (2.5), maximizes over the remaining parameters
M-step), and iterates until convergence.

It can be shown that the expectation of the log joint posterior density with respect to the conditional distributions of
he γj is as follows (Tang et al., 2017):

pj = p(γj = 1|βj, θ, y)

=
p(βj|γj = 1, s1)p(γj = 1|θ )

p(βj|γj = 0, s0)p(γj = 0|θ ) + p(βj|γj = 1, s1)p(γj = 1|θ )
(2.6)

t follows that the conditional posterior expectation of the jth scale/penalty parameter S−1
j is as follows:

E(S−1
j |βj) = E

(
1

(1 − γ )s0 + γjs1

⏐⏐⏐⏐βj

)
=

1 − pj
s0

+
pj
s1

(2.7)

t is important to note that no matter the form of the pj, once their values are obtained the conditional expectation of the
−1
j immediately follows.
Eq. (2.5) shows that (β, φ) and θ are never within the same term simultaneously, and so can be updated separately as

he following terms:

Q1(β, φ) = ℓ(β, φ) −

J∑ 1
Sj

|βj| (2.8)

j=1
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Q2(θ ) =

J∑
j=1

(γj log θ + (1 − γj) log(1 − θ )) (2.9)

The coordinate descent algorithm can fit GLM’s with ridge, lasso, or elastic net penalties, and Q1(β) can be updated with
this algorithm using the R package glmnet since it is equivalent to the lasso penalty with γj and S−1

j traded for their
conditional posterior distributions (Zou and Hastie, 2005; Friedman et al., 2007, 2010). When θ has a uniform prior, we
can use elementary calculus to update θ with θ =

1
J

∑J
j=1 pj.

2.3. Extending the EMCD algorithm to incorporate spatial information

The EM algorithm described above can handle ill-posed data and highly correlated predictors, but it does not explicitly
model dependence structure among parameter estimates and only allows for lasso penalties. However, in spatial settings
we may expect relevant parameters to cluster, which suggests that spatially structured priors may be useful in variable
selection. In addition, the correlation among predictors in spatial settings may make the lasso undesirable since it tends
to pick one predictor and ignore the rest. In what follows we extend the spike-and-slab lasso GLM to address both of
these issues.

3. The EMCD-IAR model

3.1. The spike-and-slab elastic net

The elastic net penalty has a Bayesian interpretation as a mixture of normal and double exponential distributions (Zou
and Hastie, 2005):

p(βj|λ) = C(λ, ξ ) exp
[
−λ{(1 − ξ )β2

j + ξ |βj|}
]

(3.1)

where the choice of ξ ∈ [0, 1] determines the compromise between ridge and lasso penalties; ξ = 0 corresponds to ridge,
and ξ = 1 corresponds to lasso. Note that C(λ, ξ ) is a constant depending on (λ, ξ ), which in a fully Bayesian analysis is
complicated to handle (Li and Lin, 2010). However, we treat ξ as tuning parameter within our EM algorithm framework,
which avoids these difficulties. The elastic net is easily extended to a spike-and-slab framework:

p(βj|γj, s0, s1) = EN(βj|0, Sj)

= (1 − ξ ) exp

(
− log(

√
2πSj) −

β2
j

Sj

)

+ ξ exp
(

− log(2Sj) −
|βj|

Sj

)
(3.2)

here Sj = (1−γj)s0 +γjs1. Thus, ξ = 0 corresponds to a ‘‘spike-and-slab ridge’’ penalty, while ξ = 1 produces the spike-
and-slab lasso described by Eq. (2.3). Note that a fully Bayesian approach to fitting the elastic net involves a normalizing
constant in Eq. (3.1) that is a complicated function of λ and ξ , an issue that would follow us into Eq. (3.2) (Li and Lin,
2010). However, by using the proposed EM approach we may regard ξ as a tuning parameter and avoid issues with the
omplicated normalizing constant.

.2. IAR spatial models for inclusion probabilities

The penalty E(S−1
j |βj) determines the shrinkage severity for the βj estimates, with variable selection arising via the

many resulting zero estimates. The penalty is a function of pj = p(γj = 1|βj, θ, y), which is itself a function of the current
estimate of probability of inclusion, θ . We can also allow parameter specific probabilities of inclusion, i.e., θj. The joint
prior for γ then has the same form as Eq. (2.4):

p(γ|θj) =

J∏
j=1

θ
γj
j (1 − θj)1−γj (3.3)

where now θj = P(γj = 1|θj) is the prior probability of inclusion for a specific βj and pj = p(γj = 1|βj, θj, y) is the
conditional probability of inclusion for βj. Thus, if a structure is imposed on the θj, then variable selection will implicitly
depend on that structure.

Spatial processes and spatially structured priors are commonly modeled using a special case of Gaussian Markov
Random Fields (GMRF) known as conditional autoregressions (CAR), which have joint multivariate Normal distributions
but are specified by conditional structure (Banerjee et al., 2015; Brown et al., 2014; Cressie and Wikle, 2011; Rue and
Held, 2005). The logit of the probabilities of inclusion, θ ∈ [0, 1], ψ = logit(θ ) = log θj

∈ (−∞,∞), has the same
j j j 1−θj
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support as the (multivariate) Normal distribution, which enables us to use the CAR model, and after modeling the ψj, we
an obtain θj = logit−1(ψj).
A special case of the CAR model is the Intrinsic Autoregressive model (IAR), which has an improper joint distribution (Jin

t al., 2005; Banerjee et al., 2015; Besag and Kooperberg, 1995):

ψ = N
(
0, [τ 2(D − W )]−1) (3.4)

here τ is a common precision parameter, D = diag(nj) contains the number of neighbors, nj, for each location, and

= {wij} is the adjacency matrix where wij =

{
1 j ∼ i
0 otherwise.

Despite its impotence as a data generating model, the IAR is a useful prior distribution in spatial models because each
j is interpreted as varying about the mean of its neighbors rather than a global mean, and an IAR prior models stronger
patial dependence than the traditional CAR model (Besag and Kooperberg, 1995; Banerjee et al., 2015; Rue and Held,
005). We model spatial structure in ψj using the following pairwise difference formulation with τ = 1, which results in
nterpretive and computational benefits (Besag and Kooperberg, 1995; Morris et al., 2019):

log p(ψ) ∝ −
1
2

⎛⎝∑
j:j∼i

(ψj − ψi)2

⎞⎠ (3.5)

.3. Derivation of the log joint posterior distribution

The EM algorithm takes the expectation of the ‘‘missing’’ data/parameters, replaces them with conditional expectations
n the joint log likelihood, and then maximizes to obtain parameter estimates. The relevant joint log posterior extends
q. (2.5) with IAR priors on the logit prior inclusion probabilities and an elastic net prior for the βj:

log p(β, φ, γ,ψ|y) ∝ ℓ(β, φ)  
log likelihood

−

J∑
j=1

log EN(βj|0, Sj)  
log prior for β

+

J∑
j=1

γj log θj + (1 − γj) log(1 − θj)  
log prior for γ

−
1
2

⎛⎝∑
j:j∼i

(ψj − ψi)2

⎞⎠
  
log prior for ψj=logit(θj)

(3.6)

.4. The structure of the EM algorithm

-step
We again treat the γj as missing and take their conditional expectations given the other parameters in the model.

imilar to Tang et al. (2017), by application of Bayes’ Rule the conditional probability that a variable should be included
he model is as follows:

pj = p(γj = 1|βj, θj, y)

=
p(βj|γj = 1, s1)p(γj = 1|θj)

p(βj|γj = 1, s1)p(γj = 1|θj) + p(βj|γj = 0, s0)p(γj = 0|θj)
(3.7)

here p(γj = 1|θj) = θj, p(γj = 0|θj) = 1 − θj, p(βj|γj = 1, s1) = EN(βj|0, s1), and p(βj|γj = 1, s1) = EN(βj|0, s0). Given pj,
he conditional posterior expectation of S−1

j is the same as in Tang et al. (2017):

E(S−1
j |βj) = E

(
1

(1 − γj)s0 + γjs1

)
=

1 − pj
s0

+
pj
s1

(3.8)

herefore, the E-step differs from Tang et al. (2017) in that there are now J prior probabilities of inclusion, θj, rather than
single θ . The M-step progresses by maximizing Eq. (3.6) with γ and S−1 exchanged for their conditional expectations.
j j

145



J.M. Leach, I. Aban, N. Yi et al. Journal of Statistical Planning and Inference 217 (2022) 141–152

s
c

S

w

v
v
d
6
s
f
t

1

M-step
Having obtained conditional expectations of the γj, we plug these into the joint log posterior distribution and maximize

the expression, which is again divided into two terms. Regardless of the spatial model, the first term remains Q1(β, φ),
imilar to Eq. (2.8), but allows the full range of elastic net priors specified by ξ ∈ [0, 1]; Q1(β, φ) is again maximized via
yclic coordinate descent with the R package glmnet. However, Q2(θ) now contains an additional term corresponding to
the IAR prior on the ψj. We maximize Q2(θ) using a numerical optimization function within the R package rstan using
TAN code based on Morris et al. (2019):

Q1,EN = ℓ(β, φ)  
log likelihood

−

J∑
j=1

log EN(βj|0, Sj)  
log prior for β

(3.9)

Q2,IAR =

J∑
j=1

γj log θj + (1 − γj) log(1 − θj)  
log prior for γ

−
1
2

⎛⎝∑
j:j∼i

(ψj − ψi)2

⎞⎠
  
log prior for ψj=logit(θj)

(3.10)

We iterate until convergence following Tang et al. (2017) in assessing convergence by:

|d(t) − d(t−1)
|(

0.1 + |d(t)|
) < ϵ (3.11)

here d(t) = −2 log ℓ(β(t), φ(t)) is the estimated deviance at iteration t . A development version of an R package, ssnet,
can fit these models and is available on GitHub (https://github.com/jmleach-bst/ssnet).

4. Simulations

4.1. Simulation framework

We performed a simulation study to demonstrate the methodology and explore its properties. The simulations consist
of 5000 data sets containing N = {25, 50, 100} subjects where subject design vectors arise from a 32 × 32 two
dimensional images generated by a multivariate Normal distribution with zero mean, unit variance, and correlation
given by σj,k = 0.90dj,k , j ̸= k, where dj,k is the Euclidean distance in 2D space between any two locations j and k
for j, k = 1, . . . , J . The resulting images thus have J = 1024 predictors whose correlation with each other decays
as distance in space increases. These images are vectorized by treating the 2D lattice as a matrix, then concatenating
rows. We constructed a circular cluster of 29 non-zero parameters in the 32 × 32 two-dimensional space, which are
ectorized in the same manner as the images to ensure matching indices for the J = 1024 predictor and parameter
ectors, X i and β, respectively. Binary outcomes were simulated for each of i = 1, . . . ,N subjects from a Bernoulli(X iβ)
istribution for two scenarios: βj = 0.5 and βj = 0.1. Thus, the βj = 0.5 and βj = 0.1 data sets correspond to a
4.87% and 10.51% increase in odds of an ‘‘event’’ occurring, respectively. The data were generated using the R package
im2Dpredictr, which is available on CRAN (https://CRAN.R-project.org/package=sim2Dpredictr); example code can be
ound at https://github.com/jmleach-bst and example images for both subjects and parameter clustering can be found in
he supplementary materials.

We analyze each dataset with both elastic net (ξ = 0.5; a halfway compromise between ridge and lasso) and lasso
(ξ = 1) priors under the traditional framework, the spike-and-slab framework without spatial structure, and the spike-
and-slab framework with spatial structure, using a combination of the R packages glmnet, BhGLM, and ssnet. We employ
0-fold cross validation for N = {50, 100} and 5-fold cross validation for N = 25 to estimate measures of model fit/variable

selection criteria. For the traditional elastic net models we allow cv.glmnet() to internally select the optimal parameter,
and for the spike-and-slab lasso models we set the slab scale parameter to s1 = 1 and manually choose the sequence
s0 = {0.01, 0.02, 0.03, . . . , 0.3} over which to choose the value of spike parameter that minimizes cross-validated
prediction error. Details and code for reproducing the simulation results can be found at https://github.com/jmleach-
bst/ssen-iar-simulations. All simulations and analysis were performed in R version 3.6.0.

We report several metrics to evaluate two aspects of model performance, prediction and variable selection. Prediction
accuracy is assessed with cross-validated measures of deviance, mean square error (MSE), mean absolute error (MAE), area
under the ROC curve (AUC), and misclassification (MC). False discovery rate (FDR) and the proportion of true non-zero
parameters remaining in a model (Power) are used to evaluate variable selection performance. Note that ideal models
146
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Table 1
Model performance for βj = 0.5.

N Model s0 Dev.a AUC MSE MAE MCb FDR Power

25

EN 0.0638 17.5657 0.9068 0.1135 0.2280 0.1655 0.7164 0.4297
SSEN 0.2337 17.4036 0.9280 0.1058 0.2582 0.1374 0.5327 0.2508
SSEN (IAR) 0.1177 10.2933 0.9885 0.0527 0.1659 0.0493 0.4008 0.0382
Lasso 0.0482 19.0767 0.8906 0.1236 0.2414 0.1808 0.6774 0.0991
SSL 0.1260 11.8960 0.9654 0.0683 0.1788 0.0854 0.2408 0.0292
SSL (IAR) 0.1480 10.4159 0.9810 0.0569 0.1604 0.0653 0.2956 0.0299

50

EN 0.0356 25.6359 0.9560 0.0806 0.1713 0.1155 0.6931 0.5740
SSEN 0.1539 23.3948 0.9752 0.0665 0.1781 0.0805 0.4498 0.1810
SSEN (IAR) 0.1243 14.3074 0.9944 0.0357 0.1153 0.0346 0.3723 0.0690
Lasso 0.0251 27.1321 0.9504 0.0857 0.1767 0.1230 0.6489 0.1753
SSL 0.1312 20.7455 0.9746 0.0607 0.1487 0.0793 0.2082 0.0440
SSL (IAR) 0.1690 14.5391 0.9905 0.0393 0.1108 0.0458 0.2947 0.0532

100

EN 0.0231 40.3157 0.9746 0.0624 0.1360 0.0881 0.6853 0.6879
SSEN 0.1271 34.9221 0.9852 0.0498 0.1303 0.0632 0.4380 0.1987
SSEN (IAR) 0.1197 22.7961 0.9952 0.0298 0.0892 0.0331 0.3872 0.1074
Lasso 0.0160 42.0318 0.9719 0.0655 0.1385 0.0929 0.6344 0.2662
SSL 0.1016 31.8247 0.9851 0.0468 0.1120 0.0624 0.1758 0.0710
SSL (IAR) 0.1683 23.3564 0.9931 0.0325 0.0865 0.0405 0.3067 0.0839

aDeviance.
bMisclassification.

Table 2
Model performance for βj = 0.1.

N Model s0 Dev.a AUC MSE MAE MCb FDR Power

25

EN 0.1978 27.1003 0.7718 0.1849 0.3551 0.2916 0.7296 0.2158
SSEN 0.2103 25.4963 0.7924 0.1716 0.3528 0.2724 0.6714 0.1660
SSEN (IAR) 0.1102 15.2298 0.9448 0.0906 0.2230 0.1154 0.6266 0.0230
Lasso 0.1242 28.0742 0.7602 0.1916 0.3634 0.3033 0.7064 0.0543
SSL 0.1644 22.0441 0.8314 0.1464 0.3066 0.2329 0.4820 0.0276
SSL (IAR) 0.1618 16.1904 0.9286 0.0992 0.2266 0.1338 0.5531 0.0204

50

EN 0.1402 49.3439 0.8263 0.1642 0.3308 0.2455 0.7010 0.3050
SSEN 0.1217 42.2354 0.8741 0.1366 0.2892 0.1979 0.6004 0.1140
SSEN (IAR) 0.1072 27.6291 0.9523 0.0834 0.1924 0.1113 0.6606 0.0392
Lasso 0.0857 50.2457 0.8197 0.1674 0.3340 0.2507 0.6813 0.0999
SSL 0.0893 40.0524 0.8894 0.1279 0.2649 0.1822 0.3017 0.0305
SSL (IAR) 0.1576 30.3577 0.9379 0.0938 0.2012 0.1288 0.5859 0.0336

100

EN 0.1069 92.1660 0.8594 0.1509 0.3128 0.2198 0.6531 0.3893
SSEN 0.0728 81.1419 0.8910 0.1304 0.2683 0.1875 0.5091 0.0828
SSEN (IAR) 0.0953 57.4810 0.9467 0.0888 0.1865 0.1228 0.7289 0.0573
Lasso 0.0630 93.1529 0.8557 0.1528 0.3138 0.2234 0.6322 0.1554
SSL 0.0696 79.9220 0.8946 0.1279 0.2589 0.1828 0.2923 0.0477
SSL (IAR) 0.1366 64.1930 0.9324 0.1004 0.2025 0.1407 0.6314 0.0502

aDeviance.
bMisclassification.

ill have lower values for deviance, MSE, MAE, MC, and FDR, and higher values for AUC and Power. The ideal spike scale
s chosen as the one whose penalty minimizes the cross-validated deviance. Deviance is defined as −2 times the log
ikelihood with respect to the held-out data, not the training data; i.e., it is an estimate of model fitness to independent
ata, rather than observed data, which can help prevent over-fitting.

.2. Simulation results

Tables 1 and 2 show that, for each sample size and both effect sizes, within a given elastic net level the models with
patially structured priors have better cross-validated prediction errors compared to models without. Under IAR priors,
he spike-and-slab elastic net (SSEN) outperforms the spike-and-slab lasso (SSL), but this difference is small compared
o the difference between these models with and without IAR priors; i.e., most of the improvement in prediction error
esults from the IAR priors not the halfway compromise between ridge and lasso penalties. Note that SSL with IAR priors
as the lowest MAE when βj = 0.5, but along every other metric in both scenarios SSEN with IAR priors had the best
erformance.
With respect to variable selection, the traditional elastic net (EN) captures the highest proportion of true non-zero

arameters for all scenarios, and for any given scenario EN captures a higher proportion of true non-zero parameters
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Fig. 1. Collective average estimates for true non-zero parameters. Each dot summarizes all estimates for true non-zero parameters. SSL (IAR) usually
has the least bias, but its variance is larger than most other models except SSL. Traditional models (EN and Lasso) have the lowest variance, tend
to over-shrink parameters compared to the other models. SSEN (IAR) provides a best balance between bias and variance.

compared to the lasso. However, in most scenarios examined, the traditional elastic net also had the highest estimated
FDR. In general, it appears that including the IAR priors compromises between the traditional EN/lasso and the SSEN/SSL
in that it tends to have FDR and proportion of non-zero parameters discovered in between the other two frameworks.
However, for all models considered both FDR and proportion of true non-zero parameters included in the model is less
than what we consider optimal.

We can gain additional insight by considering summaries of parameter estimates themselves. Here we consider
rouped estimates of true zero and non-zero parameters, as shown in Figs. 1 and 2, which show the mean and standard
eviations for estimates of non-zero and zero parameters, respectively; note that further details and discussion, as well as
ables and figures are found in the supplementary materials. Not surprisingly, the average parameter estimates increase as
he sample size increases. With respect to non-zero parameters, adding spatially structured priors to the model increases
he average estimate at every sample size and for both the elastic net and lasso priors. This is an interesting contrast to
he proportion of true non-zero parameters captured, where the traditional methods performed best. With respect to the
rue zeros, as was often the case with FDR, the models with spatial structure were not as low as the spike-and-slab models
ithout spatial structure, but they were lower than the traditional models. This sheds light on how the spatial structure is

eading to improved prediction error; presumably, the spike-and-slab models are estimating closer to the ‘‘true’’ non-zero
arameter values. The average parameter values for the true zero parameters are also fairly close to zero, and so even
hen they are included, i.e., leading to higher FDR, they are small relative to estimates for true non-zero parameters,
nd so do not introduce much noise into prediction. This is a benefit of the spike-and-slab framework, where again as
dvertised the spike priors shrink ‘‘unimportant’’ parameters more than ‘‘important’’ parameters, at least on average.
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Fig. 2. Collective average estimates for true zero parameters. Each dot is the summary measure of all estimates for true zero parameters. The βj
abels in this case correspond to the simulation scenario, but the true value for the parameters estimated here is zero. Estimates for irrelevant
arameters tends to be near zero for all models. SSL and SSEN without spatial structure are the least biased, while the traditional and spatially
tructured models are slightly more biased. The traditional models tend to have the smallest variance, and again SSEN (IAR) appears to strike a
omparatively good balance between bias and variance.

However, the mean parameter estimates do not by themselves show why the elastic with spatial structure outperforms
he spike-and-slab lasso with spatial structure, but considering the variation in the estimates will help complete the
tory. For each prior structure, the EN version has lower variance compared to the lasso version, which implies that the
ias–variance trade-off is best for the SSEN model with spatial structure and contributes to better prediction.

. Application: Alzheimer’s disease

We also evaluated the proposed methodology using data obtained from the Alzheimer’s Disease Neuroimaging Initia-
ive (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by Principal
nvestigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging
MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment
an be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
pecifically, we modeled disease status using cortical thickness measures on the Desikan–Killiany atlas (Desikan et al.,
006); cortical thickness measures were estimated using FreeSurfer (Dale et al., 1999; Fischl et al., 1999; Fischl, 2012).
he Desikan–Killiany atlas consists of 68 brain regions, 34 per hemisphere, and was used to specify the neighborhood
atrix when including IAR priors on the logit inclusion probabilities. Specifically, two regions of the atlas were considered
eighbors if they were in the same hemisphere and shared a border.
149
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Table 3
Cortical thickness: Prediction error estimates.

Model s0 s1 Cross-validated average

Dev. AUC MSE MAE MC

Lasso 0.002 0.002 90.321 0.952 0.046 0.094 0.063
SSL 0.270 7.500 73.591 0.969 0.035 0.067 0.050

CN vs. SSL-IAR 0.260 6.000 70.865 0.972 0.035 0.069 0.049
Dem. EN 0.001 0.001 84.257 0.958 0.043 0.088 0.057

SSEN 0.260 10.000 71.964 0.970 0.036 0.077 0.051
SSEN-IAR 0.280 10.000 67.023 0.975 0.034 0.073 0.049

Lasso 0.007 0.007 425.341 0.622 0.208 0.414 0.289
SSL 0.150 7.000 412.024 0.665 0.198 0.389 0.279

CN vs. SSL-IAR 0.140 4.000 402.915 0.684 0.194 0.381 0.272
MCI EN 0.006 0.006 423.658 0.629 0.207 0.410 0.290

SSEN 0.140 4.500 410.785 0.665 0.198 0.392 0.278
SSEN-IAR 0.150 7.500 399.505 0.694 0.192 0.377 0.276

Lasso 0.009 0.009 140.894 0.790 0.148 0.293 0.210
SSL 0.180 7.500 123.997 0.847 0.129 0.243 0.183

MCI vs. SSL-IAR 0.140 4.000 122.383 0.849 0.126 0.244 0.172
Dem. EN 0.006 0.006 135.305 0.813 0.142 0.278 0.205

SSEN 0.140 7.000 120.445 0.853 0.124 0.244 0.171
SSEN-IAR 0.140 5.500 119.196 0.856 0.123 0.246 0.165

The analysis included 389 subjects, of which 234 (60.15%) were cognitively normal (CN), 116 (29.82%) were mildly
cognitively impaired (MCI), and 39 (10.03%) had dementia. We then separately analyzed the three possible binary
outcomes: CN vs. dementia, CN vs. MCI, and MCI vs. dementia. We examined model fitness for two levels of elastic net,
ξ = {0.5, 1}, for the traditional models, spike-and-slab models without spatially structured priors, and spike-and-slab
models with spatially structured priors. 5-fold cross validation was used to select the ideal scale parameters for both the
slab (s1 = {1, 1.5, 2, 2.5, . . . , 10}) and spike (s0 = {0.01, 0.02, . . . 0.5}) distributions for the relevant models; for each
scenario we chose the combination of s0 and s1 that minimized the cross validated deviance. All analyses were performed
in R version 3.6.0.

Table 3 shows the estimated prediction error statistics when using cortical thickness as features. For each classification
scenario, SSEN-IAR had the lowest model deviance, but in each case was closely followed by SSL-IAR. In general, model
performance varied widely across outcome scenarios. The most noticeable variation was with AUC, which was above 0.95
for CN vs. dementia, between 0.62 and 0.69 for CN vs. MCI, and between 0.79 and 0.86 for MCI vs. dementia. Similar
differences by classification scenario were present for MSE, MAE, and misclassification (MC).

6. Discussion

We have presented a novel approach to using the spike-and-slab prior with the elastic net when predictors exhibit
spatial structure. The elastic net can be preferred to the lasso when the number of predictors far exceeds the sample size
and when the predictors exhibit strong correlations. Since both the lasso and elastic net are expressible in a Bayesian
framework they are reasonably amenable to a spike-and-slab prior framework, e.g., as explored in Roc̆ková and George
(2014, 2018). Our primary contributions were to incorporate spatial information into the model fitting process by placing
intrinsic autoregressive priors on the logit of the probabilities of inclusion and to fit this model for GLMs by adapting the
computationally efficient EM algorithm presented in Tang et al. (2017).

We explored the properties of this model using a simulation study, which while limited to only a few effect sizes
and binary outcomes, yielded several important lessons. First, we demonstrated the potential for spike-and-slab models
with spatially structured priors to improve upon their spatially unstructured counterparts; it is also noteworthy that the
spike-and-slab models in general outperformed the traditional models with respect to cross validated prediction error,
showing also that this prior framework may be fruitful for spatial data. While at least in the settings examined, the FDR
and proportion of true non-zero parameters captured is not impressive for any model, and larger sample sizes would be
necessary to achieve reasonable results on these metrics, the summaries for the parameter estimates themselves lend
insight into why the spike-and-slab models with spatial structure are better fit. That is, in general the spike-and-slab
models with spatially structured priors tend to produce estimates closer to the ‘‘true’’ values for ‘‘important’’ parameters
and correspondingly shrink ‘‘unimportant’’ parameter estimates more strongly than do the traditional methods, which
is consistent with other relevant literature and again demonstrates the power of combining spike-and-slab models with
shrinkage penalties.

One might question the utility of placing IAR priors on the logit prior probabilities of inclusion in addition to an elastic
net extension to the spike-and-slab lasso, given that the elastic net already encourages clustering (Zou and Hastie, 2005).
The primary reason to use the IAR prior is that it can more precisely incorporate biological information about spatial
structure into the model. Furthermore, in both the simulation studies and application to ADNI data, the best fitting models
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were those that incorporated the IAR prior and the elastic net extension, which further justifies both extensions. Moreover,
model fitness was improved far more by including the IAR prior than using the elastic net penalty. That is, while SSEN
(IAR) generally had the best performance, it was much closer in performance to SSL (IAR) than SSEN, as seen in Tables 1–3.

While the SSEN (IAR) models outperformed the SSL (IAR) models in the simulation studies and application presented,
he difference in performance tended to be slight. However, an additional reason for preferring the SSEN (IAR) model is
hat it presents a better bias–variance trade off. Thus, since in practice one must usually analyze a single data set, it may
e preferable to allow slightly more bias to obtain a more stable model.
While larger sample sizes may be desirable, many if not most real-world scenarios using images do not have very

arge sample sizes. Thus, it is relevant to probe how methods perform with smaller sample sizes and to understand what
e can expect to learn in such circumstances. In addition, we showed that the improvements in model fitness were not
estricted to the simulation scenarios; when applied to subjects from the ADNI data set, the best cross-validated model
its were models that included the spatially structured priors.

In the simulation study results were not sensitive to choice of s1, and thus it was possible to follow the convention
f fixing s1 = 1. However, this was not the case in analysis of ADNI data, where model performance was sensitive to
he choice of s1. We stress that it is important to carefully choose the range of penalty parameters when applying the
ethodology presented in this work, and to perform sensitivity analysis to ensure that an appropriate range of values
as been examined.
The proposed approaches in this work have many possible future directions and possible applications. Since the model

s fit for GLM, it is amenable to the full range of non-linear outcomes ordinarily analyzed with GLM’s, and thus applications
eyond Gaussian outcomes, or as shown here binary outcomes, is immediately possible without revision to the model.
iven the strong performance with respect to cross validated prediction error, the algorithm may also be useful in
lassification problems and may be extended to handle more complex spatial relationships to better address difficult
lassification problems.
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